Versions Compared
Version | Old Version 3 | New Version Current |
---|---|---|
Changes made by | ||
Saved on |
Key
- This line was added.
- This line was removed.
- Formatting was changed.
Mehrkanaliger analoger Lock-in-Verstärker für EIT
Multichannel analog lock-in amplifier for EIT
Objective
The goal of this work is to design, implement, and evaluate a multichannel analog lock-in amplifier system for Electrical Impedance Tomography (EIT) and to evaluate the feasibility of using such a design in a high channel count EIT system. The lock-in amplifier system should process multiple input signals in parallel (minimum of 4, better 16), covering a voltage range of 0 V to +-5 V and operating at frequencies from 1 kHz to 100 kHz. The signal amplitudes of the inputs will be in a range of 1mV to 100mV and have a SNR of around 20dB. The system's accuracy must achieve an amplitude error of less than 1% and a phase error of less than 5° for all channels over the complete specified range of operation.
Tasks
Literature Review and Theoretical Background
Research the principles of lock-in amplifiers, focusing on their application in EIT.
Study the challenges of multichannel signal processing and the design considerations for analog circuits.
Identify the performance in terms of measurement error of existing analog lock-in amplifiers.
System Design
Develop a circuit design for multiple lock-in amplifiers capable of processing signals in the specified range.
Select appropriate components (e.g., operational amplifiers, filters, mixers, etc.) to meet the accuracy and frequency requirements.
Simulate and evaluate the system design via simulations tools (e.g. LTSpice).
PCB Design and Implementation
Create a schematic and PCB layout using CAD software (e.g., Altium Designer, KiCAD).
Fabricate the PCB and assemble the components.
Integration and Testing
Interface the PCB with suitable lab equipment for input signal generation and output evaluation (e.g., function generators, oscilloscopes).
Verify the system's performance in terms of amplitude and phase accuracy.
Calibration
Identify and perform the necessary measurements needed to calibrate for the measurement errors.
Implement a calibration algorithm.
Analyze the measurement error with calibration.
Evaluation and Optimization
Analyze the measurement results to identify sources of error.
Propose improvements to the design if necessary to meet the error thresholds.
Evaluate the feasibility of using parallel analog lock-in amplifiers for a 256 channel EIT system
Name: | |
---|---|
Thesis Type MA/BA/PA: | PA |
Student ID / Matrikelnummer: | |
Field of Study / Studiengang: | |
Official start-date / Offizieller Beginn: | |
Final-report-due /Abgabe: | |
Spotlight-presentations: | 1. 2. 3. |
Finale presentation / Abschlusspräsentation | |
Zweitprüfer / Second Examiner | |
Confidential / Vertraulich |
Child pages (Children Display) | ||
---|---|---|
|
Zeitplanung:
Checklist
Introduction / tour in M4
Urheberrechtsvereinbarung signed: https://www.tuhh.de/t3resources/sls/pdf/ZPA/Formulare_oeffentlich/Rechte_an_Abschlussarbeiten.pdf
if applicable: signed confidential agreement
official registration
Helpful links:
Document Upload Final Thesis / Dokumentenabgabe Abschlussdokument
File of final presentation / Dokumentenabgabe Abschlusspräsentation
Link for further files / Link für weitere Dokumente
Recent updates | ||||||
---|---|---|---|---|---|---|
|
Popular Labels | ||||
---|---|---|---|---|
|