Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Mathinline
body--uriencoded--\begin%7Bgather*%7D \frac%7BU_a%7D%7BU_e%7D(\omega \rightarrow \infty)=-1 => U_a = - U_e \\ \end%7Bgather*%7D

Lösung 5.4

Einsetzen von    in   ergibt:

Mathinline
body--uriencoded--\begin%7Bgather*%7D \frac%7BU_a%7D%7BU_e%7D=\frac%7B2%7D%7B1+j \cdot \frac%7B1%7D%7BCR_2%7D\cdot C \cdot R_2%7D-1 = \frac%7B2%7D%7B1+j%7D-1 <=>U_a =\left(\frac%7B2%7D%7B1+j%7D-1\right)\cdot U_e \end%7Bgather*%7D

Für den Betrag folgt:

Mathinline
body--uriencoded--\begin%7Bgather*%7D %7CU_a%7C=\left%7C\left(\frac%7B2%7D%7B1+j%7D-1\right)\cdot U_e\right %7C=\left%7C\frac%7B2%7D%7B1+j%7D-1\right%7C\cdot %7CU_e%7C=\left%7C\frac%7B2-(1+j)%7D%7B1+j%7D\right%7C\cdot %7CU_e%7C\\ =\left%7C\frac%7B2\cdot(1-j)-(1+j)\cdot (1-j)%7D%7B(1+j)\cdot (1-j)%7D\right%7C\cdot %7CU_e%7C =\left%7C\frac%7B(2-2j)- (1%5e2-j%5e2)%7D%7B1%5e2-j%5e2%7D\right%7C\cdot %7CU_e%7C\\ =\left%7C\frac%7B(2-2j)- (1-(-1))%7D%7B1-(-1)%7D\right%7C\cdot %7CU_e%7C =\left%7C\frac%7B2-2j- 2%7D%7B1+1%7D\right%7C\cdot %7CU_e%7C = %7C-j%7C \cdot %7CU_e%7C= %7CU_e%7C\\ \end%7Bgather*%7D

Lösung 5.4

Allgemein gilt für die komplexe Darstellung

Mathinline
body--uriencoded--\(\underline%7BZ%7D=%7Cz%7C\cdot e%5e%7B(j \cdot φ)%7D.\)
   Die Übertragungsfunktion kann in die entsprechende Form gebracht werden:

...